
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 64 | P a g e

Low Power Error Correcting Codes Using Majority Logic

Decoding

A. Adline Priya., II Yr M. E

(Communicasystems), Arunachala College

Of Engg For Women, Manavilai,

adline.priya@yahoo.com

Guided By: K.L. Nisha, Assist Prof

(Ece) Arunachala College Of Engg For Women,

Manavilai, nisha2787@gmail.com

Abstract

A low-density parity-check (LDPC) code is a linear error correcting code, and is used for transmitting message

over a noisy transmission channel. A new class of error correcting codes called EG-LDPC (Euclidean

Geometry-LDPC) codes and its encoder and decoder architectures for nanomemory applications is designed.

EG-LDPC codes also have fault secure detection capability. One step majority logic decoding technique is used

to detect errors in the memory. The method detects whether a word has errors in the first iterations, and when

there are no errors the decoding ends without completing the rest of the iterations. This greatly reduces the

average decoding time.

Index terms- Error correction codes (ECC), EG-LDPC codes, Majority logic decoding, Memory.

I. INTRODUCTION
 LDPC codes and Turbo codes are among the

known near Shannon limit codes that can achieve

very low bit error rates for low SNR applications.

When compared to the decoding algorithm of Turbo

codes, LDPC decoding algorithm has more

parallelization, low implementation complexity, low

decoding latency, as well as no error-floors at high

SNRs. For decoding of turbo codes LUT-Log BCJR

algorithm is used and the decoding architecture

contains 2
m
 ACS units which are placed in parallel,

where m refers to the number of memory elements.

And also the turbo decoder architecture contains

memory units and also a number of registers [3]. The

turbo decoder architecture has increased hardware

complexity and power consumption. Also, in the last

few years, the advances of low-density parity-check

codes have seen them surpass turbo codes in terms of

error floor and performance in the higher code rate

range, leaving leaving turbo codes better suited for

the lower code rates only. LDPC codes are

considered for all the next generation communication

standards.

Error correction codes are used to protect

memories from soft errors, which change the logical

value of memory cells without damaging the circuit.

Due to the increase in soft error rate in logic circuits,

the encoder and decoder circuitry around the memory

blocks have become susceptible to soft errors and it

should also be protected. Hence we design a new

encoder and decoder circuit for memory designs. As

technology improves, memory devices become larger

and more powerful error correction codes are needed.

The codes such as turbo codes and other error

correcting codes can correct a large number of errors,

but it generally requires larger complex decoders.

This results in increased power consumption. To

avoid a high decoding complexity, one step majority

logic decodable codes are used for memory

applications. Euclidean Geometry Low Density

Parity Check (EG-LDPC) codes are one step majority

logic decodable. The idea behind the method the

method is that, the first iterations of the majority

logic decoding is to detect if the word being decoded

contains errors. If there are no errors, the decoding

can be stopped without completing the rest of the

iterations. Thus the decoding time is reduced.

Majority logic decoding is used to detect and correct

in memory applications.

Section I gives the introduction and

Euclidean geometry codes are explained in section II.

The design structure of the EG-LDPC codes are

explained in section III. And then the results and

conclusion are given in IV and V.

II. EUCLIDEAN GEOMETRY CODES
Euclidean geometry codes are low density

parity check codes and it is hence called EG-LDPC

codes. These codes are built using special structures

of finite Euclidean Geometry. LDPC codes have

limited number of 1‟s in the rows and columns of the

matrix, and hence the complexity of the detectors and

correctors is reduced. Euclidean Geometry is a finite

geometry with n points and J lines. The properties of

Euclidean Geometry [2] are given as follows:

1)every line consists of ρ points

2)any two points connected by exactly one line

3)every point is intersected by γ lines

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 65 | P a g e

4)two lines intersect exactly in one point or they

are parallel

H is a Jxn parity check matrix, whose rows

and columns corresponds to lines and points in an

Euclidean Geometry. Every column of H matrix

represents a point in the space, every row represents a

line and every entry of 1 in the matrix represents that

the corresponding row line is incident on the column

point. The row weight ρ should be equal to the

column weight γ. hij = 1 iff i
th

 line of EG contains j
th

point of EG, and zero otherwise. H is an LDPC

matrix and therefore the code is an LDPC code. Also,

EG-LDPC codes are cyclic codes.

III. DESIGN STRUCTURE
All the existing designs of encoders and

decoders use the conventional fault tolerant scheme

to protect the encoder end decoder circuitry. The fault

tolerant scheme includes logic replication or

concurrent parity prediction. These schemes add

additional logic to check the correctness of the circuit

calculation. The overall architecture of ECC

nanomemory is given in [4].

A)Encoder:

Let i be the k-bit information vector and G

be the kxn generator matrix, then the received n-bit

codeword c is given by,

 c = i x G

the generator matrix is given by, G = [I:X] where i is

the k x k identity matrix and X be the k x (n-k) matrix

that generates the parity bits. (n,k,d) represent an

error correction code with code length n, information

bit length k and minimum distance d. Minimum

distance d refers to the minimum number of codebits

that are different between any two codewords. The

structure of the encoder circuit for (15,7,5) EG-LDPC

code is given below as obtained from [2] in fig.1. i0

to i6 represents the 7-bit information vector. Each

XOR gates generate one parity bit of the encoded

vector. The encoder structure contains (n-k) XOR

gates.

B)Detector:

Validity of received encoded vector is

checked with the parity check matrix. The operation

of the detector is to generate the syndrome vector.

The checking or detecting operation is given by,

 s = c x H
T

the syndrome vector s is an (n-k) bit vector. Each bit

of the syndrome vector is the product of c with one

row of H. If the syndrome s is „0‟ the c is a valid

codeword and if not equal to „0‟ the c is erroneous.

The binary sum of this product is implemented with

an XOR gate. Since row weight of H is ρ, to generate

1 digit of the syndrome vector, we need a ρ input

XOR gate or (ρ-1) two input XOR gate. The whole

detector takes n(ρ-1) two input XOR gates. An error

is detected if any syndrome bits has a non-zero value.

OR function of all syndrome bits are used to detect

errors. (n-input XOR gate used). The detector for an

(15,7,5) EG-LDPC code is given in fig. 2 as obtained

from [2].

C)Memory:

In memory units with ECC scrubbing logic

is used to maintain integrity. To avoid accumulation

of too many errors in memory, scrubbing is

performed. Scrubbing refers to the process of

periodically reading memory words from the

memory, correct the potential errors and write them

back into the memory. While performing the

operation of memory scrubbing,

 Fig.1. structure of an encoder circuit for the (15,7,5) EG-LDPC code

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 66 | P a g e

Fig.2. Structure of an detector circuit for the (15,7,5)

EG-LDPC code.

normal memory access operation is stopped.

D)One step majority logic decoding:

One step majority logic correction is a fast

and relatively compact error correcting technique.

Type 1 2D EG-LDPC codes are one step majority

logic decodable. Type 1 EG-LDPC codes are

systematic. One step majority logic corrector is used

to identify the correct value of each bit in the

codeword directly from the received codeword.

Decoding of EG-LDPC codes have low

computational overhead and is sparseness. Hence it

can be easily implemented using nanoscale hardware

[4]. The conventional technique includes message

passing error correction strategy. This technique

demands multiple iterations or error diagnosis and

trial correction.

The one step majority logic corrector when

implemented serially provides compact

implementation and when implemented in parallel

minimize correction latency. The advantage of this

method is that it requires very little additional

circuitry as the decoding circuitry is also used for

error detection. This method contains two main parts.

1) generating a specific set of linear sums of the

received vector bits.

2) finding majority value of the computed linear

sums.

A linear sum of the received encoded vector

bits can be formed by computing the inner product of

the received vector and a row of a parity-check

matrix. This sum is called Parity-Check sum. The

core of the one-step majority-logic corrector is

generating γ parity-check sums from the appropriate

rows of the parity-check matrix. The one-step

majority logic error correction is summarized in the

following procedure. These steps correct a potential

error in one code bit lets say, cn-1

1) Generate γ parity-check sums by computing the

inner product of the received vector and the

appropriate rows of parity-check matrix.

2) The γ check sums are fed into a majority gate. The

output of the majority gate corrects the bit cn-1 by

inverting the value cn-1 of if the output of majority

gate is “1”.

The circuit implementing a serial one-step

majority logic corrector for a (15,7,5) EG-LDPC

code is shown in Fig. 3. This circuit generates γ

parity-check sums with γ XOR gates and then

computes the majority value of the parity-check

sums. Since each parity-check sum is computed using

a row of the parity check matrix and the row density

of EG-LDPC codes are ρ , each XOR gate that

computes the linear sum has ρ inputs.

If errors can be detected in the first few

iterations of majority logic decoding , then whenever

no errors are detected in those iterations, the

decoding can be stopped without completing the rest

of the iterations. In the first iteration, errors will be

detected when at least one of the check equations is

affected by an odd number of bits in error.

In the second iteration,as bits are cyclically

shifted by one position, errors will affect other

equations such that some errors undetected in the first

iteration will be detected. As iterations advance, all

detectable errors will eventually be detected.

 IV. RESULTS

Fig.3. serial one-step majority logic decoder for the

(15,7,5) EG-LDPC code

The parameters of the EG-LDPC codes are

given such as: N is the block size, K the number of

information bits, J the number of majority logic

decoding check equations and tML the number of

errors that the code can correct using one step

majority logic decoding. In fig.3. the block size N =

15. First the entire data block is loaded into the

registers. Then the check equations are computed and

the majority value is calculated. The majority value

indicates the correctness of the code-bit under

consideration. If majority value is 1, the bit cn-1 is

inverted, otherwise it is kept unchanged. Once the

code bit cn-1 is corrected the codeword is cyclic

shifted and code bit cn-2 is placed at position cn-1 and

will be corrected. Thus all the bits are cyclically

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 67 | P a g e

shifted. This set of operations constitute a single

iteration: the bits are in the same position after N

iterations, in which they are loaded. Thus, each bit

may be corrected only once. The properties of check

equations are given as follows:

1)All check equations include the variable whose

value is stored in the last register(i.e c14)

2)The rest of the registers are included in at most one

of the check equations.

The simulation results of encoder, decoder,

detector and memory is given below

 Fig.4. simulation of encoder

 Fig.5. simulation of memory

 Fig.6. simulation of decoder

 Fig.7. simulation of detector

An hypothesis was given in [1] and is given as “given

a word read from memory protected with one step

majority logic decoding EG-LDPC codes, and

affected by up to four bit-flips, all errors can be

detected in only three decoding cycles. Also the

majority logic circuitry is simpler for EG-LDPC

codes, as the number of equations is a power of two.

The majority gate has an application in other error

correcting codes, and this compact implementation

can improve many other applications. A majority

function of γ binary digits is simply the median of the

digits (where we define the median of an even

number of digits as the
𝛾

2
 + 1

st
 smallest digit. The

majority logic decoding technique was implemented

in VHDL and synthesized, and the results show that

for codes with large block sizes the overhead is low.

The comparison between LDPC and Turbo codes is

given in terms of area, power and delay in the table.

1. Thus decoding of LDPC codes are less complex

than turbo codes. And it also reduces the hardware

complexity and power consumption.

Table. 1. Comparison of LDPC and Turbo codes

IV. CONCLUSION
Thus the decoder architecture for LDPC

codes are designed. And the simulation results for

encoder, decoder, memory and detector are obtained.

And also the majority logic decoder is implemented

serially. And the future work is to implement the

majority logic decoder in parallel.

REFERENCES
[1] Pedro Reviriego, Juan A. Maestro, and Mark

F. Flanagan,” Error Detection in Majority

Logic Decoding of Euclidean Geometry

Low Density Parity Check (EG-LDPC)

Codes” IEEE Transactions On Very Large

Scale Integration Systems, Vol. 21, No. 1,

January 2013

[2] Helia Naeimi and André DeHon,” Fault

Secure Encoder and Decoder for

NanoMemory Applications” IEEE

Transactions On Very Large Scale

Integration Systems, Vol. 17, No. 4, April

2009

Parameters LDPC code

(Proposed)

Turbo code

[3]

Decoding

Algorithm

Majority logic

decoding

LUT-Log-

BCJR

Delay(ns) 4.910 30.413

Power(W) 0.034 0.042

Area(mm
2
)

 0.15 0.35

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 68 | P a g e

[3] Liang Li, Robert G. Maunder, Bashir M. Al-

Hashimi, and Lajos Hanzo,” A Low-

Complexity Turbo Decoder Architecture for

Energy-Efficient Wireless Sensor

Networks” IEEE Transactions On Very

Large Scale Integration Systems, Vol. 21,

No. 1, January 2013

[4] Shalini Ghosh and Patrick D. Lincoln,” Low

Density Parity Check Codes for Error

Correction in Nanoscale Memory”

September 25, 2007

[5] R. C. Baumann, “Radiation-induced soft

errors in advanced semiconductor

technologies,” IEEE Trans. Device Mater.

Reliab., vol. 5, no. 3, pp. 301–316, Sep.

2005

.[6] M. A. Bajura, Y. Boulghassoul, R. Naseer,

S. DasGupta, A. F.Witulski, J. Sondeen, S.

D. Stansberry, J. Draper, L. W. Massengill,

and J. N. Damoulakis, “Models and

algorithmic limits for an ECC-based

approach to hardening sub-100-nm

SRAMs,” IEEE Trans. Nucl. Sci., vol. 54,

no. 4, pp. 935–945, Aug. 2007

.[7] R. Naseer and J. Draper, “DEC ECC design

to improve memory reliability in sub-100

nm technologies,” Proc. IEEE ICECS, pp.

586–589, 2008

.[8] S. Ghosh and P. D. Lincoln, “Dynamic low-

density parity check codes for fault-tolerant

nano-scale memory,” presented at the

Foundations Nanosci. (FNANO), Snowbird,

Utah, 2007.

[9] S. Ghosh and P. D. Lincoln, “Low-density

parity check codes for error correction in

nanoscale memory,” SRI Computer Science

Lab., Menlo Park, CA, Tech. Rep. CSL-

0703, 2007.

[10] H. Naeimi and A. DeHon, “Fault secure

encoder and decoder for memory

applications,” in Proc. IEEE Int. Symp.

Defect Fault Toler. VLSI Syst., 2007, pp.

409–417.

[11] B. Vasic and S. K. Chilappagari, “An

information theoretical framework for

analysis and design of nanoscale fault-

tolerant memories based on low-density

parity-check codes,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 54, no. 11, pp.

2438–2446, Nov. 2007.

[12] H. Naeimi and A. DeHon, “Fault secure

encoder and decoder for nanomemory

applications,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–

486, Apr. 2009.

[13] S. Lin and D. J. Costello, Error Control

Coding, 2nd ed. Englewood Cliffs, NJ:

Prentice-Hall, 2004.

[14] S. Liu, P. Reviriego, and J. Maestro,

“Efficient majority logic fault detection with

difference-set codes for memory

applications,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 20, no. 1, pp. 148–

156, Jan. 2012.

[15] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-

Ghaffar, “Codes on finite geometries,” IEEE

Trans. Inf. Theory, vol. 51, no. 2, pp. 572–

596, Feb. 2005.

